Модель osi и dod, сетевые протоколы, виды трафика

Что такое сетевая модель OSI?

То есть модель OSI — это обобщенные стандарты для разработчиков программ, благодаря которым любой компьютер одинаково может расшифровать данные, переданные с другого компьютера. Чтобы было понятно, приведу жизненный пример. Известно, что пчелы видят все окружающее их в утрафиалетовом свете. То есть одну и ту же картинку наш глаз и пчелиный воспринимает абсолютно по-разному и то, что видят насекомые, может быть незаметно для зрения человека.

То же самое и с компьютерами — если один разработчик пишет приложение на каком-либо программном языке, который понимает его собственный компьютер, но не доступен ни для одного другого, то на любом другом устройстве вы прочитать созданный этим приложением документ не сможете. Поэтому пришли к такой идее, чтобы при написании приложений следовать единому своду правил, понятному для всех.

Общая характеристика модели OSI

https://youtube.com/watch?v=DcV3HY6lFP4%3F

В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, разработанный ещё до принятия модели OSI и вне связи с ней.

К концу 70-х годов в мире уже существовало большое количество фирменных стеков коммуникационных протоколов, среди которых можно назвать, например, такие популярные стеки, как DECnet, TCP/IP и SNA. Подобное разнообразие средств межсетевого взаимодействия вывело на первый план проблему несовместимости устройств, использующих разные протоколы. Одним из путей разрешения этой проблемы в то время виделся всеобщий переход на единый, общий для всех систем стек протоколов, созданный с учетом недостатков уже существующих стеков. Такой академический подход к созданию нового стека начался с разработки модели OSI и занял семь лет (с 1977 по 1984 год). Назначение модели OSI состоит в обобщенном представлении средств сетевого взаимодействия. Она разрабатывалась в качестве своего рода универсального языка сетевых специалистов, именно поэтому её называют справочной моделью.В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с совершенно определенным аспектом взаимодействия сетевых устройств.

Приложения могут реализовывать собственные протоколы взаимодействия, используя для этих целей многоуровневую совокупность системных средств. Именно для этого в распоряжение программистов предоставляется прикладной программный интерфейс (Application Program Interface, API). В соответствии с идеальной схемой модели OSI приложение может обращаться с запросами только к самому верхнему уровню — прикладному, однако на практике многие стеки коммуникационных протоколов предоставляют возможность программистам напрямую обращаться к сервисам, или службам, расположенных ниже уровней. Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается непосредственно к ответственным за транспортировку сообщений по сети системным средствам, которые располагаются на нижних уровнях модели OSI. Итак, пусть приложение узла А хочет взаимодействовать с приложением узла В. Для этого приложение А обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Но для того, чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни. После формирования сообщения прикладной уровень направляет его вниз по стеку уровню представления. Протокол уровня представления на основании информации, полученной из заголовка сообщения прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию — заголовок уровня представления, в котором содержатся указания для протокола уровня представления машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который, в свою очередь, добавляет свой заголовок и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце в виде так называемого концевика.) Наконец, сообщение достигает нижнего, физического, уровня, который, собственно, и передает его по линиям связи машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней.

Физический уровень помещает сообщение на физический выходной интерфейс компьютера 1, и оно начинает своё «путешествие» по сети (до этого момента сообщение передавалось от одного уровню другому в пределах компьютера 1). Когда сообщение по сети поступает на входной интерфейс компьютера 2, оно принимается его физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню. Как видно из описания, протокольные сущности одного уровня не общаются между собой непосредственно, в этом общении всегда участвуют посредники — средства протоколов нижележащих уровней. И только физические уровни различных узлов взаимодействуют непосредственно.

Противостояние с TCP/IP

Разработка OSI продвигались настолько медленно, что вызывала сильное раздражение у всей индустрии. К началу 90-х годов стало понятно, что она не поспевает за реальным развитием телекома. 

Хотя правительства по всему миру рекомендовали соблюдать стандарты OSI, на практике телекомы предпочитали быстро соединять разнородные гетерогенные системы по протоколам TCP/IP, не соблюдая порядок и иерархию OSI. Интернет-инженер Маршалл Роуз писал в учебнике 1990 года, что «интернет-сообщество изо всех сил старается игнорировать сообщество OSI. По большому счету, технология OSI уродлива по сравнению с технологией Интернета».Предвзятость интернет-сообщества привела к тому, что оно отвергало любые технические идеи OSI. Например, в 1992 году некоторые руководители IETF предложили принять продвинутый стандарт ISO вместо IPv4, но сообщество отвергло эту идею.

Ещё одно преимущество TCP/IP было в том, что интернет-протоколы можно внедрять бесплатно, а чтобы использовать стандарты OSI, производители и интеграторы должны покупать бумажные копии стандартов у ISO.

Инженеры признавали, что у OSI архитектурно более проработанная модель, она гораздо более полная, более тщательная. Но на практике проще взять простой в реализации TCP/IP. Впрочем, модель OSI никто не отменял, и в неё вполне вписывается даже стек TCP/IP.

3 уровень – сетевой (L3)

На этом этапе определяется путь передачи данных и вводится новое понятие маршрутизации. На L3 используется 2 типа протоколов: с установкой и без установки соединения. Первый тип протоколов отправляет данные, содержащие полную информацию об отправителе и получателе. Это нужно для того, чтобы сетевые устройства получили полные адресные сведения и правильно определили путь для маршрутизации данных. Пакет будет передаваться от одного маршрутизатора (роутера) к другому, пока не попадет получателю.

Но у протоколов, работающих без установки соединения, есть один существенный минус – не соблюдение порядка передачи данных. Пользователь получит сообщения от отправителя не так, как он их отправлял, потому что разные пакеты могут быть отправлены разными маршрутами. В этом случае, прежде чем информация попадет к пользователю, она обрабатывается на L4 транспортными протоколами.

При использовании протоколов с установкой соединения данные поступают пользователю в том порядке, в котором они были отправлены. Но при их использовании сам процесс отправки информации занимает больше времени. Активнее всего на L3 используется протокол ARP для определения MAC-адреса по IP. Он также осуществляет обратное преобразование уникального идентификатора сетевого оборудования в IP.

L1, L2, L3 относятся к уровням среды. Они отвечают за перемещение данных по беспроводным сетям, кабелям, сетевому оборудованию. Более высокие уровни (с L4 по L7) называют уровнями хоста. Они взаимодействуют с пользовательскими устройствами (ПК, смартфонами, планшетами) и отвечают за представление данных.

9.3. Особенности функционирования протоколов передачи данных в рамках модели OSI

Модель OSI представляет хотя и очень важную, но только одну из многих моделей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, службами, поддерживаемыми на верхних уровнях, и прочими параметрами. Соответствие популярных стеков протоколов модели OSI показано в таблице 9.1.

Модель OSI описывает концепцию организации информационной связи компьютеров, но не конкретный способ обмена данными. Реальная последовательность действий компьютеров определяется используемыми протоколами обмена. В рассматриваемом контексте протокол определяется как набор правил и соглашений, предписывающих компьютерам последовательность действий для осуществления обмена через среду передачи данных.

Таблица 9.1 — Соответствие популярных стеков протоколов модели OSI

Уровень модели OSI

Стек протоколов

IBM/Microsoft

TCP/IP

Novell

OSI

Прикладной

SMB

Telnet, FTP, TFTP, SNMP, SMTP, WWW

NCP, SAP

X.400, X.500, FTAM

Представительный

Протокол представления OSI

Сеансовый

NetBIOS

TCP, UDP

Сеансовый протокол OSI

Транспортный

SPX

Транспортный протокол OSI

Сетевой

 

IP, RIP, OSPF, BGP, IGRP

IPX, RIP, NLSP

ES-ES, IS-IS

Канальный

Ethernet, Token Ring, FDDI, Fast Ethernet, SLIP, l00VG-AnyLAN, X.25, ATM, LAP-B, LAP-D, PРР

Физический

Медный кабель, оптическое волокно, радиолиния

Существует довольно большое разнообразие протоколов обмена – протоколы локальных и глобальных сетей, межсетевого взаимодействия, маршрутизации. Протоколы локальных сетей выполняют функции физического и канального уровня. Протоколы глобальных сетей работают на трех низших уровнях модели. Протоколы межсетевого взаимодействия, как очевидно из названия, являются протоколами сетевого уровня. И, наконец, протоколы маршрутизации также являются протоколами сетевого уровня, поскольку отвечают за обмен информацией между маршрутизаторами, выбирающими сетевой маршрут.

Соответствие протоколов уровням модели OSI приведено в таблице 9.3.

Многие протоколы при выполнении своих функций основываются на результатах работы других протоколов. Например, протоколы маршрутизации используют протоколы межсетевого взаимодействия для обмена данными между маршрутизаторами. Концепция построения протоколов, опирающихся на другие существующие протоколы, является фундаментальной для OSI модели и служит основой создания стеков взаимодействующих протоколов. Пример стека протоколов TCP/IP можно посмотреть на рисунке 9.10.

Глава 9 основана на материале работы .

Таблица 9.2 — Соответствие протоколов уровням модели OSI

Уровень OSI

Протоколы

Прикладной

HTTP, gopher, Telnet, DNS, DHCP, SMTP, SNMP, CMIP, FTP, TFTP, SSH, IRC, AIM, NFS, NNTP, NTP, SNTP, XMPP, FTAM, APPC, X.400, X.500, AFP, LDAP, SIP, ITMS, Modbus TCP, BACnet IP, IMAP, POP3, SMB, MFTP, BitTorrent, eD2k, PROFIBUS, NCP.

Представи-тельный

XML-RPC, TDI, XDR, SNMP, Telnet, NCP, AFP, ICA

Сеансовый

ASP, ADSP, DLC, Named Pipes, NBT, NetBIOS, NWLink, Printer Access Protocol, Zone Information Protocol, SSL, TLS, RPC.

Транспорт-ный

TCP, UDP, SOCKS, NetBEUI, AEP, ATP, IL, NBP, RTMP, SMB, SPX, SCTP, DCCP, RTP, TFTP.

Сетевой

IP, IPv6, ICMP, IGMP, IPX, NWLink, NetBEUI, DDP, IPSec, RARP, BOOTP, SKIP, RIP, GRE.

Канальный

STP, ARCnet, ATM, DTM, SLIP, SMDS, Ethernet, FDDI, Frame Relay, LocalTalk, Token ring, StarLan, L2F, L2TP, PPTP, PPP, PPPoE, PROFIBUS, CSMA/CD, CSMA/CA, ARP.

Физический

RS-232, RS-422, RS-423, RS-449, RS-485, xDSL, ISDN (T1, E1), Ethernet (10BASE-T, 10BASE2, 10BASE5), Fast Ethernet (100BASE-T, 100BASE-TX, 100BASE-T4, 100BASE-FX), Gigabit Ethernet (1000BASE-T, 1000BASE-TX, 1000BASE-SX).

Рисунок 9.10 — Взаимосвязь отдельных протоколов внутри TCP/IP

Краткая история развития компьютерных сетей

Компьютерные сети появились в результате развития телекоммуникационных технологий и компьютерной техники. То есть появились компьютеры. Они развивались. Были телекоммуникационные системы, телеграф, телефон, то есть связь. И вот люди думали, хорошо было бы если бы компьютеры могли обмениваться информацией между собой. Эта идея стала основополагающей идеей благодаря которой появились компьютерные сети.

50-е годы: мейнфреймы

В 50-х года 20-го века появились первые «компьютеры» — мейнфреймы. Это были большие вычислительные машины которые могли занимать по площади современный спортивный зал.  Вычислительные мощности были не большие, но факт в том что вычисления уже производила машина.

Начало 60-х годов: многотерминальные системы

В дальнейшем к одному мейнфрейму стали подключать несколько устройств ввода-вывода, появился прообраз нынешних терминальных систем да и сетей в целом.

70-е годы: первые компьютерные сети

?0-е годы, время холодной войны. СССР и США сидели возле своих ракет и думали кто же атакует (или не атакует) первым. Центры управления ракетами США располагались в разных местах удаленных друг от друга. Если в одном центре производится запуск ракет, после которого в центр попадает ракета врага, то вся информация в этом центре — утеряна. Управление перспективных исследовательских проектов Министерства обороны США (Defense Advanced Research Projects Agency (DARPA)) ставит перед учеными задачу — разработать технологию которая позволяла бы передавать информацию из одного стратегического центра в другой на случай его уничтожения.

В 1969 году появляется ARPANET (от англ. Advanced Research Projects Agency Network) — первая компьютерная сеть созданная на основе протокола IP который используется и по сей день. За 11 лет ARPANET развивается до сети способной обеспечить связь между стратегическими объектами вооруженных сил США.

Середина 70-х годов: большие интегральные схемы

На основе интегральных схем появляются «мини компьютеры». Они  начинают выходить за пределы министерства обороны и постепенно внедряются в повседневную жизнь. За компьютерами начинают работать бухгалтера, менеджеры, компьютеры начинают управлять производством. Появляются первые локальные сети.

В период с 80-х до начала 90-х годов появились и прочно вошли в нашу жизнь:

  1. Ethernet.
  2. Token Ring.
  3. Arcnet.
  4. FDDI (Fiber Distributed Data Interface) — волоконнооптический интерфейс передачи данных.
  5. TCP/IP используется в ARPANET.
  6. Ethernet становится лидером среди сетевых технологий.
  7. В 1991 году появился интернет World Wide Web.

Модель OSI

Сетевая модель OSI (англ. open systems interconnection basic reference model — Базовая Эталонная Модель Взаимодействия Открытых Систем). Это иерархическая модель состоящая из семи уровней, сформированных в зависимости от функций выполняемых протоколами. Другими словами эта модель необходима, что бы разные сетевые устройства могли взаимодействовать между собой. Именно поэтому понимание этой модели помогает разобраться как происходит передача данных в сети. А, как известно, что бы что-то контролировать нужно, в первую очередь, понимать как это работает.

Модель OSI. Уровни

Модель OSI имеет семь уровней и каждый из этих уровней выполняет определенные функции. Давай разберемся поподробнее:

Седьмой уровень — уровень приложений. Или его ещё называют прикладной уровень — на этом уровне предоставляются средства для доступа пользователей к сетевым ресурсам. Как правило, это единственный уровень, доступный конечным пользователям, поскольку на нем предоставляется интерфейс, на основании которого они осуществляют всю свою деятельность в сети.

Шестой уровень — уровень представления. На этом уровне получаемые данные преобразуются в формат, удобный для их чтения на уровне приложений. Порядок кодирования и декодирования данных на этом уровне зависит от протокола, применяемого на уровне приложений для передачи и приема данных.

Пятый уровень — сеансовый уровень. Этот уровень обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой. Уровень управляет созданием соединения и корректным завершением сеанса, а также обменом информацией.

Четвертый уровень — транспортный уровень. Он необходим для обеспечения надёжной передачи данных от отправителя к получателю. При этом степень надёжности передачи данных может очень сильно отличаться в зависимости от используемого протокола.

Третий уровень — сетевой уровень. На этом уровне происходит маршрутизация данных в физических сетях. На этом же уровне происходит разбиение потоков данных на более мелкие части. Именно на этом уровне работают маршрутизаторы, и именно поэтому их иногда называют устройствами третьего уровня.

Второй уровень — канальный уровень. Основное назначение — предоставить схему адресации для обозначения физических устройств.

Первый уровень — физический уровень. Нижний уровень модели, который определяет метод передачи данных, представленных в двоичном виде, от одного устройства к другому. Т.е осуществляется физическая передача данных каналами связи. На этом же уровне определяются технические характеристики оборудования. Со стороны компьютера функции физического уровня выполняются сетевым адаптером.

Как работает модель OSI

Теперь разберемся как всё это работает. Изначально передача данных по сети начинается на уровне приложений передающей системы. Данные проходят сверху вниз по всем уровням модели OSI до тех пор, пока не достигнут физического уровня, где находится точка, откуда данные отправляются из передающей системы в принимающую. А принимающая система получает данные на своем физическом уровне, откуда данные проходят снизу вверх по всем уровням модели OSI, достигая в конечном итоге уровня приложений. При прохождении данными отправляющих уровней, на каждом уровне к данным добавляется заголовок. Данные вместе с заголовком образуют блок, это называется protocol data unit (PDU) или блок протокольных данных. А когда информация переходит на принимающую сторону и начинает проходить уровни там, то этот заголовок отнимается при прохождении зеркального уровня на принимающей стороне. Это такой способ «общения» протоколов между собой, по умному он называется «инкапсуляция данных».

Уровни OSI

Для наглядности процесс работы сети принято разделять на 7 уровней, на каждом из которых работает своя группа протоколов.

Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.

Задачи компьютера ОТПРАВИТЕЛЯ:

  • Взять данные из приложения
  • Разбить их на мелкие пакеты, если большой объем
  • Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.

Задачи компьютера ПОЛУЧАТЕЛЯ:

  • Принять пакеты данных
  • Удалить из него служебную информацию
  • Скопировать данные в буфер
  • После полного приема всех пакетов сформаровать из них исходный блок данных
  • Отдать его приложению

Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.

Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.

Разберем их подробнее.

6. Уровень представления (Presentation Layer)

Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.

Ваше мнение — WiFi вреден?
Да
22.91%

Нет
77.09%

Проголосовало: 36410

5. Сеансовый уровень (Session Layer)

У него много задач.

  1. Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
  2. Здесь же происходит распознавание имен и защита:
    • идентификация — распознавание имен
    • аутентификация — проверка по паролю
    • регистрация — присвоение полномочий
  3. Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
  4. Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
  5. Сегментация — разбивка большого блока на маленькие пакеты.

4. Транспортный уровень (Transport Layer)

Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:

  • Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
  • Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.

3. Сетевой уровень (Network Layer)

Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть IP адреса (IP протокол — это протокол межсетевого взаимодействия).

2. Канальный уровень (Data Link Layer)

Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.

При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.

При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.

1. Физический уровень (Transport layer)

Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.

Сетевые уровни модели OSI

Физический

Отвечает за физическую передачу данных между устройствами на большие и не очень расстояния. Он описывает виды сигналов и способы их обработки для разных сред передачи: проводов (витой пары и коаксиала), оптического волокна, радиолинии (wi-fi и bluetooth), инфракрасного канала. Единицы данных на этом уровне – биты, преобразованные в электрические импульсы, свет, радиоволны и т.д. Также тут фиксируются типы разъемов, их распиновка.

Устройства, работающие на физическом уровне модели ОСИ (OSI Model): повторители сигнала, концентраторы (хабы). Это наименее «интеллектуальные» устройства, задачей которых является усиление сигнала или его разветвление без какого-либо анализа и модификации.

Канальный

Находясь над физическим, должен «опустить» правильно оформленные данные в среду передачи, предварительно приняв их от верхнего уровня. На приемном конце протоколы канального уровня «поднимают» информацию из физики, проверяют полученное на наличие ошибок и передают выше по стеку протоколов.

Для осуществления процедур проверки необходимо, во-первых, сегментировать данные для передачи на порции (кадры), во-вторых, дополнять их служебной информацией (заголовками).

Также тут впервые всплывает понятие адреса. Здесь – это MAC (англ. Media Access Control) адрес – шестибайтовый идентификатор сетевого устройства, необходимый для указания в кадрах в качестве получателя и отправителя при передаче данных в рамках одного локального сегмента.

Устройства: сетевой мост (bridge), коммутатор. Их преимущественное отличие от «нижних» устройств – ведение таблиц MAC адресов по своим портам и рассылка/фильтрация трафика уже только по необходимым направлениям.

Сетевой

Объединяет целые сети. Решает глобальные логистические задачи по передаче данных между разными сегментами больших сетей: маршрутизацию, фильтрацию, оптимизацию и контроль качества.

Единица передаваемой информации – пакеты. Адресация узлов и сетей производится присвоением им 4-байтовых номеров – IP (англ. Internet Protocol) адресов, иерархически организованных, и позволяющих гибко настраивать взаимную логическую видимость сегментов сетей.

Также здесь появляются и привычные символьные имена узлов, за соответствие которых IP адресам отвечают протоколы сетевого уровня. Устройства, работающие на этом этаже модели OSI – маршрутизаторы (роутеры, шлюзы). Реализуя в себе все три первых уровня стека протоколов, они объединяют собой разные сети, перенаправляют пакеты из одной в другую, выбирая по определенным правилам их маршрут, ведут статистику передачи, обеспечивают безопасность за счет таблиц фильтрации.

Транспортный

Транспортировка в этом случае подразумевается логическая (так как за физическую отвечает 1 ступень стека): установление соединения с противоположным узлом на соответствующем уровне, подтверждение доставки полученных данных, контроль их качества. Так работает протокол TCP (англ. Transmission Control Protocol). Передаваемая порция информации – блок или сегмент.

Для передачи же потоковых массивов (датаграмм) используется протокол UDP (англ. User Datagram Protocol).

Адрес – десятичный номер виртуального программного порта конкретной рабочей станции или сервера.

Сеансовый

Управляет процессом передачи в терминах пользовательского доступа. Ограничивает время соединения (сессии) одного узла с другим, контролирует права доступа, синхронизирует начало, конец обмена.

Представительский

Полученные снизу – из сессии – данные необходимо правильно представить конечному пользователю или приложению. Корректная декодировка, декомпрессия данных, если браузер экономил ваш трафик — эти операции выполняются на предпоследнем шаге.

Прикладной

Прикладной или уровень прикладных приложений. Серфинг в браузере, получение и отправка почты, доступ к другим узлам сети посредством удаленного доступа – вершина сетевой модели OSI.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
DS-сервис
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: